 Home >>
 Marketplace >>
Solving Ratio, Proportion, & Percent Problems Using SchemaBased Instruction
Solving Ratio, Proportion, & Percent Problems Using SchemaBased Instruction is a Core program for teaching important math concepts and skills to middle school students.
Price: $10$350 Place Order
Product Information
 An evidencebased practice, schemabased instruction (SBI), can be used to develop student understanding of ratios and proportional relationships.

The instructional components of SBI include:
 Problem solving and metacognitive strategies that provide students with guidance and structure for approaching unfamiliar problems and for monitoring and reflecting on the problem solving process,
 Identifying the underlying mathematical structure of problems,
 Representing problems using diagrams that highlight the quantitative relations described in the problem, and
 Developing procedural flexibility through comparing and contrasting multiple solution methods and explaining when, how, and why to use a broad range of methods for a given class of problems.
 Aligned with Common Core State Standards
Program Features
 Lessons are scripted and include anticipated student responses. However, we do not expect teachers to read the scripts verbatim. Instead, teachers should be familiar with the content to be able to use own explanations and elaborations to implement the SBI program.
 This program does not cover the topics “slope” and “similar figures.” If they are included in your state standards, we suggest that you use other resources to support your instruction.
 Included in the program are optional challenge problems – note the purpose of challenge problems is to stimulate deep thinking and hone students’ mathematical problemsolving skills and logical reasoning skills. They are not meant for all students especially lowachieving students who need to master the basic content.

The program focuses on 3 contentrelated features – (a) determining the type of problem, (b) estimation, and (c) multiple strategies. In terms of the problem type, generally students are introduced to the most basic ‘form’ of the problem, with variations and more complex problems used subsequently.
 A key part of our curriculum is getting students to recognize problem types and to use the visualschematic diagrams to help in solving them. Using these diagrams to solve problems is only a subtle change in how teachers already solve these types of problems, but we think that this subtle change makes a big difference in student outcomes. Research suggests that “visualschematic representations should be used to support the first phase of the word problem solving process (i.e., problem comprehension) and that arithmetical representations are only appropriate in the problem solution phase” (Boonen, van der Schoot, van Wesel, de Vries, & Jolles, 2013, p. 60).
 A few somewhat tricky things about generating estimates. First, there is no one set strategy for coming up with an estimate – it really depends on the quantities in the problem. Second, sometimes it might seem like an estimate is not necessary, because the numbers in the problem don’t appear to be too hard.^{*} But nevertheless we feel that generating and using an estimate is still very important to do. Third, each student may come up with a different estimate, and this is fine.
 There are three strategies that are taught in the SBI program: cross multiplication, unit rate, and equivalent fractions. We want students to know all three. We want students to be able to use the “best” one for a given problem. What does “best” mean? Usually it means the strategy that is the easiest for a particular problem. But we also know that what might be easy for one student may not be easy for another student. So, it is possible that students can have different opinions on which strategy is best for a given problem – this is fine. But we do hope that students do not “mindlessly” use cross multiplication for every problem. Note: Although we introduce crossmultiplication as the first strategy in the program (early development of the curriculum was informed by what strategies were familiar to students and cross multiplication was the one that was taught in most schools), it is fine to delay this strategy until students have learned the other strategies.
 Problem solving and DISC: The SBI program makes extensive use of a specific problem solving process that we call DISC (Discover, Identify, Solve, Check). Our rationale for the DISC is that it is an anchor for students to reflect on the problemsolving processes. Questions are used to scaffold a solution process and encourage students to regulate their strategy knowledge during the problemsolving processes: (a) problem comprehension (e.g., How do you know it is a Ratio, Proportion, or Percent problem? How is this problem similar or different from the previously solved problem?), (b) problem representation (e.g., What diagram best fits this problem type to represent information in the problem?), (c) planning (e.g., How can you solve this problem? What are the different ways to solve it? Which strategies are better and why?), and (d) problem solution (e.g., What is an estimated answer to this problem? Is the answer reasonable given the question asked?). A key component of the problem solving approach is to have students use carefully constructed diagrams that bridge the relationship between the word problem and the underlying quantitative relations in that problem. Each of the three diagrams in the SBI program underscores different types of ratio or proportional relationships found in word problems. The use of visual representations – or diagrams in this case – is a key recommendation in today’s research on problem solving.
 Homework: Homework problems were developed to complement and reinforce critical concepts and skills taught in the SBI program. Optional challenge problems are included in each lesson. Select problems to assign for homework based on meeting the needs of your students. A caveat – it is critical to appropriately balance the time spent in class reviewing and checking homework problems (no more than 1520% of the total instructional time) with the time spent on core instruction of critical content. The distributive practice in the homework is critical because it reinforces the interactive work conducted in class on different problem types. By having teachers help students work carefully through new concepts in class, students are in a much better position to be successful on similar kinds of problems found in the homework. It is expected that students should be able to solve these problems independently.
*We purposefully used nice numbers in the word problem contexts to focus student attention on problem solving skills rather than computation skills, but these nice number are at odds with generating an estimate.
Materials are delivered in convenient, downloadable PDFs. Once the PDFs are purchased, they may be printed according to the Distribution License Agreement.
All materials listed below are included in a Teacher Kit. The Student Books and Teacher’s Guide may also be purchased separately.
Teacher’s Guide
 21 detailed lessons
 Six weeks of instruction based on daily 4550 minute sessions.
 Worked answers to Practice Problems.
Student Books

Workbook
 Blank copies of all problems included in the Teacher Guide.
 Reference guide for solving each problem type.
 Discover, Identify, Solve and Check (DISC) checklist

Student Homework Book
 Homework problems corresponding to each lesson.
 Reference guide for solving each problem type.
 Discover, Identify, Solve and Check (DISC) checklist
Teacher Homework Answer Key
 Worked answers with explanations for all problems in the Student Homework Book.
Instructional PowerPoints
 PowerPoint presentations to use during classroom instruction.
Jeopardy Game to accompany Lesson 19.
Discover, Identify, Solve and Check (DISC) Checklists to print poster size.
Our Research to Your Classroom
Based on the findings of several randomized control studies, benefits of SBI include: (a) student gains (including students with mathematics difficulties) in proportional problem solving. Such gains (although indirect) are also associated with improved attitudes toward mathematics; (b) SBI instructional resources help teachers apply the evidencebased practice to effectively teach proportional reasoning.
References
Jitendra, A. K., Dupuis, D. N., Star, J. R., & Rogriguez, M. C. (2016). The effects of schemabased instruction on the proportional thinking of students with mathematics difficulties with and without reading difficulties. Journal of Learning Disabilities, 49, 354367. doi: 10.1177/0022219414554228
Jitendra, A. K., Harwell, M. R., Dupuis, D. N., & Karl, S. R. (2017). A randomized trial of the effects of schemabased instruction on proportional problem solving for students with mathematics problemsolving difficulties. Journal of Learning Disabilities, 50, 322336. doi: 10.1177/0022219416629646
Jitendra, A. K., Harwell, M. R., Dupuis, D. N., Karl, S. R., Lein, A. E., Simonson, G. & Slater, S. C. (2015). Effects of a researchbased mathematics intervention to improve seventhgrade students’ proportional problem solving: A cluster randomized trial. Journal of Educational Psychology, 107, 10191034. doi: 10.1037/edu0000039
Jitendra, A. K., Harwell, M. R., Karl, S. R., Dupuis, D. N., Simonson, G., Slater, S. C., & Lein, A. E. (2016). Schemabased instruction: The effects of experienced and novice teacher implementers on seventhgrade students’ proportional problem solving. Learning and Instruction, 44, 5364. doi.org/10.1016/j.learninstruc.2016.03.001
Jitendra, A. K., Harwell, M. R., Karl., S. R., Im, SH., & Slater, S. C. (under review). Improving student learning of ratio, proportion, and percent: A replication study of schemabased instruction.
Jitendra, A. K., Harwell, M. R., Karl, S. R., Simonson, G. R., & Slater, S. C. (2017). Investigating a Tier 1 intervention focused on proportional reasoning: A followup study. Exceptional Children, 83(4), 340358.
Jitendra, A. K., & Star, J. R. (2012). An exploratory study contrasting high and lowachieving students' percent word problem solving. Learning and Individual Differences, 22, 151–158.
Jitendra, A. K., Star, J. R., Dupuis, D. N., & Rodriguez, M. (2013). Effectiveness of schemabased instruction for improving seventhgrade students’ proportional reasoning: A randomized experiment. Journal of Research on Educational Effectiveness, 6, 114136.
Jitendra, A. K., Star, J. R., Rodriguez, M., Lindell, M., & Someki, F. (2011). Improving students' proportional thinking using schemabased instruction. Learning and Instruction, 21, 731745.
Jitendra, A. K., Star, J., Starosta, K., Leh, J., Sood, S., Caskie, G., Hughes, C., & Mack, T. (2009). Improving students’ learning of ratio and proportion problem solving: The role of schemabased instruction. Contemporary Educational Psychology, 34(3), 250264.
Woodward, J., Beckmann, S., Driscoll, M., Franke, M., Herzig, P., Jitendra, A., Koedinger, K. R., & Ogbuehi, P. (2012). Improving mathematical problem solving in grades 4 through 8: A practice guide (NCEE 20124055). Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education.
Teachers love SBI
“I credit a LOT of that to the [SBI] project! Not only was it helpful in directlyrelated ratio, proportion, and percent problems, it also helped the kids not be afraid of the storyproblemformat testing. They had learned to read through the problem, rephrase it, THEN jump in to solve it, and then check their answers and I'm sure their confidence level going into the testing last week helped with raising their scores! I saw a LOT of kids using the [SBI] diagrams on their scratch paper during the test too. What a thrilling experience!”
“Overall this is a fantastic program! The diagrams and DISC checklist were very helpful and useful. I’ve used them multiple times in following sections too. Thank you for all of the time and effort you have put into it.”
"I did enjoy how students felt they could solve problems with their preferred method. That empowered them. Even though students did not enjoy using the diagrams, they were more accurate and more likely to solve the problem correctly if they did. The diagrams gave them a place to start. The students could organize the relevant information and know how to start the problem. This was fabulous!"
“I loved how the SchemaBased intervention helped my students understand sales tax. The SBI “jump starts” the process ... kids often times read word problems impulsively, go straight to the numbers and this helped them discriminate and work systematically. I thought my students who participated in the intervention understood better conceptually than those students who did not and effectively retained the information. Despite the study ending, I continue to use the SBI curriculum with my students.”
“I found many of the strategies very useful in my teaching, and found myself using the vocabulary with my other classes when I taught ratios, proportions, and percents at a later time. I found the diagrams to be very helpful in explaining ideas to students. I also felt that the DISC problem solving procedure was good, but often times, the estimation part was difficult if the problem was easy or quite obvious. I sometimes left it out in the beginning, but explained to students that it is still important to look back and check the reasonableness of their answers (Is your answer in the ballpark?) The script was helpful, especially in the beginning when I was unsure how to present the material. However, I felt that once I was into the lessons a little further, I condensed what was in the script and cut out some of the examples due to time and not needing to do quite so many.”
“This was a fun curriculum to use. It took a few lessons before I caught on to what to do, but then it became better. I will be using this curriculum next year.”
“I loved how the SchemaBased intervention helped my students understand sales tax. The SBI “jump starts” the process ... kids often times read word problems impulsively, go straight to the numbers and this helped them discriminate and work systematically. I thought my students who participated in the intervention understood better conceptually than those students who did not and effectively retained the information.”